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We succeed in generating an atmospheric and high pressure homogeneous dielectric barrier 
discharge (DBD) in dry air by using a simple DBD device. So far, we have tried to apply the 
homogeneous DBD to an ozonizer and found that the ozone yield is higher by the homogeneous 
discharge mode than by the conventional filamentary discharge mode in larger specific input energy 
region. In this work, we investigated the effect of gas pressure (from 0.1 MPa to 0.2 MPa) on the 
ozone yield by homogeneous DBD. The results showed that increase of gas pressure does not 
improve the ozone yield, because the reduced electric field strength in high pressure homogeneous 
DBD decreased with increasing the gas pressure. 

 
1. Introduction 

The dielectric barrier discharge (DBD) is 
composed of many filamentary micro-discharges 
(FDs), and it can be applied to ozone generation [1], 
gaseous pollution control [2], air flow control [3] and 
so on. Regarding ozone generation and gaseous 
pollution control, various methods have been studied 
to improve the energy efficiency. In our laboratory, 
efficient oxidation methods of NO in diesel exhaust 
gas by DBD have been investigated [4]. One of the 
investigations was a numerical simulation of 
chemical reactions. The conclusion was that the 
efficiency was governed by the diffusion process of O 
radicals and ozone, which were generated in the very 
thin FD column [5]. Therefore, a homogeneous DBD 
was expected to improve efficiency of ozone 
formation, NOx reduction and so on. 

In 2009, we succeed in generating an atmospheric 
pressure Townsend discharge (APTD) in air by a 
simple DBD device using alumina barriers (Supplier: 
Kyocera Corporation, purity of Al2O3: 92%) and 
plane electrodes [6], [7]. This discharge is 
homogeneous without any FDs in a discharge gap. So 
far, we have investigated the difference of ozone 
generating efficiencies by FD and APTD [8]. The 
results showed that the efficiency was higher by the 
FD mode than by the APTD mode in smaller specific 
input energy region. However in the region that the 
specific input energy is larger than 420 J/L, the APTD 
mode showed higher efficiency than FD mode. In the 
literature [9], an operation under short discharge gap 
and optimized gas pressure is advantageous for 
efficient ozone generation from air.  

In this paper, we investigated the ozone generation 
characteristics of the Townsend discharge (TD) type 
air fed ozonizer at higher gas pressure. 

2. Experimental setup 
2.1. High pressure ozone generator 

Fig. 1 shows experimental setup. This system 
consists of a H.V. power source, measurement 
devices of electrical characteristics and ozone 
concentration, a chamber, a DBD device, a digital 
camera and an image intensifier. Dry air (absolute 
humidity: 119.3 mg/m3) was used as source gas of 
ozone generation. The flow rate was fixed to 4.0 
L/min (25 °C, 1013 Pa) using a mass flow controller 
(Horiba, SEC-400mk3). The gas pressure in the 
chamber was changed from 0.1 MPa to 0.2 MPa 
(absolute pressure). Ozone concentration was 
measured by an ozone monitor (Ebara Jitsugyo, 
EG-3000B/01). 

AC high voltage was applied to the DBD device 
by a step-up transformer. The maximum applied 
voltage and frequency were 24 kVp (zero-to-peak 
voltage) and 600 Hz respectively. The applied 
voltage and the current were measured by an 
oscilloscope (Tektronix, TDS-2024B, 200 MHz, 2.0 
GS/s) using a H.V. probe (Pulse Electronic 
Engineering, EP-50K, 2000:1) and a differential 
probe (Yokogawa Electric Corporation, 700924, 100 
MHz) respectively. An integral of the current (charge 
q) was measured from the voltage drop across an 
integral capacitor. Besides, the discharge power was 
calculated by multiplying the area of V–q Lissajous 
figure by power frequency. Discharge photographs 
were taken by a digital camera (Nikon, D200) with an 
image intensifier (Hamamatsu Photonics, C5100) 
 
2.2. DBD device 

Fig. 2 shows a DBD device. The gap length was 
fixed to 2.1 mm using spacers. The barrier material is 
alumina (Kyocera Corporation, Type: A473). The 
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size and thickness are 100 cm2 and 2 mm respectively. 
The electrode material is tungsten, and its effective 
area and thickness are 58.9 cm2 and 0.01 mm 
respectively. The electrode was implanted into 
alumina barrier in order to avoid generation of 
abnormal discharges from edges of electrodes. 
Therefore, the barrier thickness from the tungsten 
film electrode surface and the barrier surface is 1 mm. 
Physical properties of the barrier material are shown 
in Table 1. 
 
2.3. Discharge mode 

Fig. 3(a) and (b) show waveforms of the applied 
voltage, gap voltage and current at 0.1 MPa and 0.17 
MPa. In case of 0.1 MPa and 50 Hz, the discharge 
started at around 2 ms and 12 ms in this figure, and 
during the discharge period, the current was 
continuous without any pulse. Once a discharge 
generated in the gap, the gap voltage was maintained 
to almost a constant value of 8.5 kV. On the other 
hand, in case of 0.17 MPa and 100 Hz, the discharge 
started at around 0 ms and 5 ms, and the current 
flowed continuously as same as the case of 0.1 MPa. 

The gap voltage became higher, and it was 
maintained to almost a constant value of 11.4 kV. 
These current waveforms were completely different 
from the gathering of high pulse currents observed in 
typical DBD. 

Fig. 4(a) and (b) show the discharge photographs, 
which were taken by the digital camera with the 
image intensifier. In case of 0.1 MPa, FDs were not 
recognized and the luminosity gradually increased 
from cathode to anode. A layer with strong 
luminosity appeared near the barrier surface of the 
anode side. In case of 0.17 MPa, FDs were not 
recognized and the luminosity gradually increased 
from cathode to anode as well. These appearances 
indicate that primary and secondary electrons drift 
uniformly to the alumina barrier over the anode, and 
they ionize the gas and generate electron avalanches 
[10]. 

 
Fig. 1. High pressure ozone generator. 

 

 
(a) Top view 

 

 
(b) Side view 

Fig. 2. Barrier discharge device. 

Table 1 barrier material 
Material Al2O3 
Purity 92% 
ε (1 MHz) 9.1 
tan δ (1 MHz) 5 × 10-4 
Surface 
roughness Ra 0.390 µm 

SEM image 
 (×2,500) 
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(a) 0.1 MPa 
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(b) 0.17 MPa 

Fig. 3. Applied voltage, gap voltage and current. 
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3. Ozone generating characteristics 

Ozone generating experiments were carried out 
using the high pressure ozone generator at various gas 
pressures. The ozone concentration and the ozone 
yield were plotted against a specific input energy 
(SIE). Here, the specific input energy is the energy 
input to a unit gas volume, namely it is the ratio of 
discharge power to a flow rate. 

Fig. 5 shows the ozone concentrations as a 
function of SIE for different gas pressure. All of the 
ozone concentrations increased with increasing SIE. 
When we check the data, for example, at the SIE of 
300 J/L, ozone concentration is 940 ppm at 0.2 MPa 
but it becomes 1086 ppm at 0.1 MPa. 

Fig. 6 shows the ozone yields as a function of SIE 
for different gas pressure. In this figure, we found that 
the highest ozone yield was obtained at gas pressure 
of 0.1 MPa, and all of the ozone yields decreased 
slightly with increasing SIE. We also found that, in 
case of 0.2 MPa, the decrease of ozone yield was very 
slight. 
 
4. Discussions 

Firstly, we discuss why ozone yield decreased 
slightly with increasing SIE. In order to clarify this 
reason, we measured the barrier surface temperature 
of grounded electrode side. As the result, in case of 
0.1 MPa, the temperature was found to be higher than 
100 °C at higher specific input energy region. 
Generally, the thermal decomposition of ozone 
becomes active in the gas temperature of above 
100 °C. Therefore, we are now thinking that the 
barrier surface temperature seems to be a cause of 
slight decrease of ozone yield. 

Next, we discuss why the highest ozone yield was 
obtained at gas pressure of 0.1 MPa. In a plasma zone, 
atomic oxygen is generated by electron impact (R1), 
and ozone is formed by three body reaction (R2). 

e + O2 → e + 2O (R1) 

O + O2 + M → O3 + M (R2) 
where, M is a third body collision partner (O, O2, 
and/or N2). From these reactions, it is understandable 
that high electron energy enhances the dissociation of 
O2, and thus the generation of ozone will increase. 
Next, we checked changes of the discharge sustaining 
voltage (Vs) and reduced electric field strength (E/n). 

Fig. 7 shows the discharge sustaining voltage (Vs) 
at various gas pressures. Here, the discharge 
sustaining voltages were determined by measuring a 
V–q Lissajous figure [11]. The discharge sustaining 
voltage increased with increasing gas pressure. Next 
we calculated the E/n (Td) [11].  

Fig. 8 shows the reduced electric field strength at 
various gas pressures. The highest reduced electric 
field strength was obtained at 0.1 MPa. 

In this experiment, the flow rate was fixed to 4.0 
L/min using the mass flow controller. Therefore, the 
gas velocity becomes the minimum at gas pressure of 
0.2 MPa, because the flow rate was a converted value 
at 25 °C and 1013 Pa. The smaller gas velocity is not 
efficient for the cooling of barriers and thereby 
thermal decomposition of ozone increased. 

(a) 0.1 MPa 

(b) 0.17 MPa 
Fig. 4. Discharge photograph. 
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Fig. 5. Ozone concentration as a function of SIE 

at various gas pressures. 
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Fig. 6. Ozone yield as a function of SIE 

at various gas pressures. 



 
31st ICPIG, July 14-19, 2013, Granada, Spain 

In summary, it is apparent that the highest ozone 
yield of TD type air fed ozonizer was obtained at 0.1 
MPa, because a higher electron energy can be 
obtained in a higher reduced electric field strength 
and a higher cooling effect of barriers can be also 
obtained in a low gas pressure. Therefore, the lower 
gas pressure is better for the dissociation of O2 and 
thus good for ozone generation. 

Finally, we discuss why lower ozone yield was 
obtained at 0.2 MPa, and why the decrease of ozone 
yield was very slight. We are now thinking that the 
reactions (R1) and (R2), and discharge poisoning by 
NOx (especially NO and NO2) [1] were suppressed 
by the low reduced electric field strength in the 
discharge. In order to clarify this phenomenon, 
further study on the gas analysis within the ozone gas 
by an FTIR spectrometer with a long path gas cell is 
necessary. 
 
5. Conclusions 

We set up the Townsend discharge type air fed 
ozonizer to investigate the effect of gas pressure 
(between 0.1 MPa and 0.2 MPa) on ozone generation 
characteristics. The experimental results obtained are 
as follows; 

(1) The ozone concentrations increased with 
increasing SIE. When we check the data at a SIE of 
300 J/L, ozone concentration of 940 ppm increased to 
1086 ppm with decreasing the gas pressure from 0.2 
MPa to 0.1 MPa. 

(2) The highest ozone yield was obtained at gas 
pressure of 0.1 MPa, and all of the ozone yields 
decreased slightly with decreasing SIE. 

(3) The highest reduced electric field strength was 
obtained at the gas pressure of 0.1 MPa, and this is a 
reason that the ozone yield was the maximum at 0.1 
MPa. 
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Fig. 7. Discharge sustaining voltage as a function 

of SIE at various gas pressures. 
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Fig. 8. Reduced electric field strength as a function 

of SIE at various gas pressures. 


